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Structural phase transitions and out-of-plane dust lattice instabilities in vertically confined
plasma crystals

K. Qiao and T. W. Hyde
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, Waco, Texas 76798-7310, USA
(Received 3 September 2004; revised manuscript received 15 November 2004; published 16 Febrjary 2005

The formation of plasma crystals confined in an external one-dimensional parabolic potential well is simu-
lated for a normal experimental environment employing a computer code ealledRee Under appropriate
conditions, crystals were found to form layered systems. The system'’s structural phase transitions, including
transitions between crystals with differing numbers of layers and the same number of layers but different
intralayer structures, were investigated and found to agree with previous theoretical and experimental research
results. One- to two-layer transitions were examined in detail and shown to start at the point where the
out-of-plane lattice instability appears. The resulting three layer system caused by this instability was observed
at the center of the system. Finally, growth rates for this out-of-plane lattice instability were obtained using the
BOX_TREE simulation with these results shown to agree with those obtained from analytical theory.
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I. INTRODUCTION a
K=, 3
In a typical experiment on Earflunder gravity, a plasma Ap

crystal is formed within a complex plasma when dust paryhereq is the mean interparticle distance as defined\y
ticles are levitated in the sheath region due to a balance be-q /.22 with N, the surface number density in thg plane.
tween the gravitational and electrostatic force of a rf dis-,7 is defined by

charge[1-3]. The total external potential in this sheath

region has been shown experimentally to approximate a _ M

parabolic potential well4]; thus, it can be modeled 5] = 47-rq2N§’2' (4)

“ where g is the charge on the grain and is the parabolic
v(2) = 522, (1) coefficient as defined above.

In this research, the formation of a plasma crystal mod-
eled by a vertically confined Yukawa system will be simu-
lated using a numerical code calledx_TREE[9,13-15. The

In most cases, the particles will become negativerStrUCtural phase transitions will be investigated and com-

charged due to electron collection. However, this charge WiIpared with previous research results. The dispersion relation

be shielded by the ambient plasma, and thus the interactioly” e out-of-plane DLW will be obtained for a ;ingle—laygr
stem, showing that the out-of-plane dust lattice instability

between patrticles is best represented by a repulsive Yukaw® t th it wh h © two.l i i
potential defined by appears at the point where the one- to two-layer transition

starts[16]. This out-of-plane dust lattice instability will be
_ _ examined with the instability growth rates calculated from
v(r) = q exp(=r/p)/Ameof, @ BOX_TREE simulations conducted for varying values of
whereq is the particle charge, is the distance between any Th_e dispersion_relation for the_ out-of-plane DLW obtained
two particles, andp is the dust Debye length. using an analytical methd@®] will also_be used to calculate
Structural phase transitions were first investigated by pulhese growth rates, _and these analytical results will be com-
bin for a two-dimensional one-component plasf@CP pared to the simulation results.
system[6]. More recently, it has been proposed that an in-
stability of the out-of-plane dust lattice wav®LW) [7-10]
in a single-layer system may be the cause for the structural
phase transition. Such transitions have been observed in ex- The dust particles in the plasma sheath are modeled as
periments on both OCP systerfikl] and colloidal suspen- particles with a constant and equal chage3.84x 10715
sions[12]. For plasma crystals, structural phase transitionsCoulomb, equal massny=1.74x10*?kg, and radiusr,
have not yet been experimentally observed but have been6.5um. The interparticle interaction is assumed to be pro-
investigated theoretically by Totsugit al. [5] employing a duced by a Yukawa potential with a Debye lengkh
confined Yukawa system as a model. Totsefjial. estab- =0.57 mm while the external potential is assumed to be para-
lished a phase diagraf] for such a system characterized by bolic in nature as shown by Eql). The box size is set at
two dimensionless parametetsaind 7. The shielding param- 15X 15X 15 mn?, for a particle number of 600, and thus the
eter « is defined by surface number densitig the mean distanca, and the

wherez is the particle height ang is the parabolic coeffi-
cient.

Il. STRUCTURAL PHASE TRANSITIONS
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shielding parametek are equal to 2.67/mfn 0.346 mm, x 107 (@) x107° (b)
and 0.61, respectively. Neutral gas drag is included with an o O O _Yu
Epstein drag coefficientl7] 8=2.22 s*. The boundary con- 26" m ® Om o ©
ditions in the XY directions are considered to be periodic i o O r = = d MoMoMoN
since the box employed has a size much smaller than the sizg |, & Om o & O | E OfOBORO
of the plasma crystal produced in a typical experimental en-> w = Om 0 > oo fo %o "D*
vironment. The boundary condition on tHedirection is as- - o O B = - E O¥o**
. . . . ] B m| & (m] 0] ] O
sumed to be a closed boundary condition with particles hit- -2| B o © 20 % A %
: : 0 0.0 “g ¥ OToXpo¥o*
ting the top or bottom boundaries of the box reflected under _5 g 48 3 0¥ p>~n
an elastic collision. -2 0 2 . -2 0 2 B
Crystallization of the completdusty) plasma is simulated x(m  x 107 xm x40
via the formation of an ordered crystal from an initially ran- -3 © 3 (d)
dom distribution of particles placed in the box. Simulati 310 x10
om distribution of particles placed in the box. Simulations p E . o OgC® B E
were conducted for the range 0#8;=0.0034. Asy de- % O o ©O o_O
creases from 0.48 to 0.0034, the crystal transitions from a 13 g B ® ® o . Og~-®
single-layer system to a two-, three-, four-, and five-layer o O o © B | = 0.0 'e) EO P
system 16] with the system existing as a single-layer systemg; of k ®RS & o G 5; 0 W o
for 0.48=7=0.456, a two-layer system for 0.336p 1 ©O ﬁO g B 10 Eko " Oﬁ Oqa
=0.072, a three-layer system for 086;=0.0216, a four- ol ® o O 5 0. .0.0
layer system for 0.020# »=0.0084, and a five-layer sys- “l o Otl g ¥ -2l O o N BB C]
tem for 0.0072> 5= 0.0034. T B e e———
Between any two consecutive stages there is a structurz X(m) 4o X(m) 40

phase transition. While within each stage,sadecreases the

number of layers remains constant, and the symmetry within |G, 1. Top view of a vertically confined Yukawa system when
each layer changes from a square to a hexagarnahgula) (@) $=0.0204,(b) 5=0.0084 (four-layer syster) (c) 7=0.0066,
lattice. Between these symmetries, there is a transition stagfd (d) 7=0.0034 (five-layer system The asterisks, circles, and
where the lattice exhibits a complex structure showing ariangles represent particles in the first, second, and third layers,
mixture of both square and hexagonal symmetfies. All respectively.

of the above agree with previous theoreti&b] and experi-

mental[11,12 results. tural phase transitions and tde function are in agreement
As can be seen in Fig. 1, for both square and hexagongantitatively with the predictions of Totsujt al. [5].
symmetries the vertical projection of a particle within one

layer always falls onto the center of the lattice cell in the
adjacent layer. As can also be seen in Figb) and Xd) for
hexagonal lattices, particles within the third layer are prima-
rily aligned vertically with particles in the first layer. Thisis  As can be seen from thak 7 function (Fig. 2) the one- to
characteristic of an hcp lattice, in which particle positionstwo-layer transition is characterized by a dramatic increase in
within a hexagonal lattice plane repeat themselves evergverall system thickness. In R¢6], it was shown that for an
other plane; thus the planes are orderedB&BAB.... OCP, a single-layer system would first go through a one- to

In fact, the fcc phase, for which the lattice planes arethree-layer transition caused by the out-of-plane lattice insta-
ordered asABCABC..., is the thermodynamically preferred bility. As » decreases, the three-layer system will then
state for a layered hexagonal structure since its Helmholtz

Ill. ONE- TO TWO-LAYER TRANSITION

free energy is smaller. However, for a Yukawa interaction
with short range, the difference between the free energies of
the fcc and hep phases is very small, and local fluctuations of
the particle density might result in a transition from the fcc to
the hcp phas¢l8]. This is presumably why the hcp rather
than the fcc structure was observed.

No vertical alignment was seen in any of the simulations.
This is to be expected since the vertical alignment observed
in plasma crystal experiments on Earth is created by the ion
flow wake effect while the system considered by this re-
search is a pure Yukawa systeab].

The relative thickness of the system was also investigated
as a function ofy [16]. A general increase in thickness as
decreases and discontinuities in they function correspond-
ing to the stepwise transitions in the number of layBks;an
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the intralayer structures on. It can be seen that the struc- angles, and circles, respectively.
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FIG. 2. The system'’s relative thicknedsa as a function of the
characteristic parameter. The intralayer structure with square, tri-
be clearly seen in Fig. 2. Also shown is the dependence adngular, and complex symmetries are represented by squares, tri-
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FIG. 3. (Color online (a) The d-» function for 0.444= 7y
=0.418 obtained fronsox_TREE simulations andb) the dispersion

PHYSICAL REVIEW E 71, 026406(2005

-5
x107°

FIG. 4. Side view of the vertically confined Yukawa system
when 7=0.4056.

sity graph for the particle velocities ko spacegFig. 3b)].

As can be seen, the two methods agree Weth. 3(b)] with
both showing the threshold value @f for the out-of-plane
lattice instability as 0.4274. Comparing this valuespfvith

the critical value of# signifying the start of the one- to
two-layer transition, 0.43€ 7iica = 0.427, it is verified
that for a vertically confined Yukawa system the one- to two-
layer transition starts at the point where an instability of the

relation of the out-of-plane lattice wave propagating parallel to theut-of-plane lattice wavéor out-of-plane lattice instabilify
prime translation vector obtained using both the analytical metho@ppearg16].

and aBox_TREE simulation for the vertically confined Yukawa sys-
tem (7=0.4274.

There is some evidence that the three-layer structure
caused by the out-of-plane lattice instability as predicted in
Ref [6] might be visible at the center of the layered system

change to a two-layer system via a first-order phase transfor 7=0.4056(Fig. 4). The fact that it only appears at the

tion. To examine the one- to two-layer transitiomhich be-
gins when 0.432 =0.408 in greater detail,BOX_TREE
simulations were conducted with a fine adjustmenyafal-
ues around the transition point, for the range 0#4#
=0.418. The correspondind-» function is shown in Fig.
3(a). As can be seen, the critical value gfsignifying the
start of the one- to two-layer transition falls in the range
0.430= 7gitical = 0.427.

The dispersion relation for the out-of-plane lattice wave
has recently been derived using an analytical mefl@dds

00
w2+i,8w='u—q—2 > %sinz

mnzjl M (kXB” )

2
The condition, which must be met for instability in the out-
of-plane lattice wave to occur, is for E(p) to have a com-
plex solution forw. When this happens, the dispersion rela-

5

center of the layered system is presumably due to the artifi-
cial periodic boundary conditions employed in the simula-
tion.

IV. OUT-OF-PLANE LATTICE INSTABILITY

The growth rate of the out-of-plane lattice instability is
described by the imaginary pant of the complex frequency
. Equation(5) was solved forp=<0.4274 and the complex
solution forw was obtained. The reéd,) and imaginary ;)
parts of this solution as a function of the wave number k for
7=0.420, 0.408, 0.396, and 0.384 are shown in Fig. 5.

From Fig. gb), it can be seen that the maximum growth
rates occur for waves with wave numbd=6.4 and
12.8 mm?! and that only waves whose wave numbers fall
within a specific range around these two values will have a
positive growth rate. All other waves exhibit a small constant

tion of the wave propagating parallel to the prime translatiomegative growth rate, which is caused by damping due to

vector intersects the=0 axis[6].
Using Eq.(5), the dispersion relation for the out-of-plane

neutral gas drag. Both the growth rates and the range of
allowable wave numbers for growing waves increasepas

lattice wave propagating parallel to the prime translationdecreases.

vector was found16] to intersect thew=0 axis whenu
<3.09x 10°° kg/s? (which corresponds tgy<0.4279. The
solid line in Fig. 3b) shows this theoretical dispersion rela-
tion when# is equal to the threshold value of 0.4274.

A BOX_TREE simulation was also run for this value af
and then employing the method[i@]; the dispersion relation

To verify these analytical prediction8px_TREE simula-
tions for time-dependent; values were conducted. The
simulations were started with & value of 0.432, which is
greater than the threshold value of 0.4274, thus ensuring
there would be no out-of-plane lattice instability or one- to
two-layer transition. After 65 s the system stabilized as a

of the out-of-plane lattice wave was represented by an intersingle-layer crystal. At this time; was changed to a value
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10 ® S, e FIG. 6. (Color onling An intensity graph showing the time de-
= g’}"-\\‘\,"’a,,,‘s‘:,'\,.\\"—._ — n=0420 pendence of the magnitude of thermally excited out-of-plane lattice
= 5 BONN S ||~~~ n=0.408 waves for various wave numbers fge0.408.
e :', \“ (9 ; /\:: --1n=0.39
0 CH I W I 1 j L n=0384 Figure 6 shows an intensity graph obtained from a simu-
. . . lation for »=0.408 after the system stabilized as a single-
‘50 5 10 15 20 layer crystal. It can be seen that for waves withalues of
k (1/mm) approximately 6 and 13, the magnitude increases with time,

. while waves with othek values do not show any apparent
FIG. 5. o and w; as functions of wave numbérfor 7=0.420,  growih, To determine whether the range kbofvalues for
0.408, 0.396, and 0.384. growing waves agrees with that found analytically, the theo-
) , retical growth rate curve obtained fay=0.408 is superim-
below the threshold value of 0.4274, at which point out-of-posed on the right side of the graph. As can be seen, the

plane lattice instabilities appeared. range of wave numbers for growing waves is in good agree-
These instabilities, or growing waves were then detecte¢hant with the analytical results.

and investigated by analyzing the output data from The pehavior of the waves can be seen more clearly by

BOX TREE. Particle motion was tracked for approximately 1 s potting the magnitude of a specific wave with a particular

after the change ofy with output data files created every \yave number as a function of time. This is shown for

0.001 s with a total of 1000 data files obtained. Once this-5 35 anck=7.07 in Figs. 7a) and 1b), respectively. As can

data was collected, they plane of the box for each set of g clearly seen, fok=2.36, the magnitude of the wave is
particles was divided into bins. For each data file the average

vertical displacement from equilibrium for the particles "
within each bin was determined, yielding a matrix of posi- 1.5% 10
tions with column number equal to the number of bins and (a)
line number equal to the number of data files. Since each file
was collected at a specific time and particles within each bin 1t
had a specificx coordinate, this position matrix yields par- =
ticle displacements, which are both tirft¢ and position(x) N
dependent. This is the same method employe@]rexcept 0.5¢
that vertical displacements instead of velocities are consid-
ered. Since the simulation results were to be compared with .
growth rates for waves propagating parallel to the prime 0 0.5 1
translation vector, the bins were chosen perpendicular to t(s)
it [9]. x107*

A Fourier transformation of this matrix about[Eqg. (6)] 6
yields a new matrix representing particle displacement in (b)
k-t space:

L —_
Z = 2/TL f z(x,t)exd — ikx]dx. (6) E
0 N

Since this matrix was obtained from the random particle
motion on the vertical direction, it represents the time depen-
dence of the magnitude of the thermally excited out-of-plane 00 0:5 1
lattice waves for various wave numbers. As shown in Fig. 6, t (s)
these data can be represented by an intensity graptin
space, where the magnitude of the waves is given by pixel FIG. 7. Magnitude of the out-of-plane lattice wave as a function
brightness. of time for k=2.36 mm?* andk=7.07 mm? (%=0.408.
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15 mately 20%, calculations show that this difference most
R~ * 1 =0.420 likely arises from round-up error of the simulations. Another
0 -"j"""nm/”"' {| ©n=0.408 possible error comes from the fact that for small(#
- ,A' ,2\5":‘; K| | B M =0.396 <0.400, the system stabilizes after approximately 0.5 s, ex-
= 5 ;;';3 O\b “ Al Bn=0384 hibiting a rough two-layer shape. Since the analytical predic-
5 N v | |7--n=0.408 tion is made based on the assumption that the system is a
,'|' ‘\' —n=0.420 single-layer system, a deviation from the analytical predic-
0 iy P ) Ll n =0.396 tion is to be expected.
------- n =0.384
- 5 10
k (1/mm) V. CONCLUSIONS

The structural phase transitions within a plasma crystal
modeled as a vertically confined Yukawa system, including
both transitions between different numbers of layers and in-
tralayer structures were simulated using Hox_TREE code.

small (below 1.2< 107% m) and random, while fok=7.07,  The generated results agree with previous theoretical and ex-
the magnitude exhibits a smooth increase for the first 0.5 perimental results.
and then stabilizes with a value of approximately 5.0 BOXTREEwas also employed to investigate both the one-
X104 m for the second 0.5 s. It can also be seen that théo two-layer transition and the out-of-plane instability for a
increase of magnitude is almost exponential, as would beertically confined Yukawa system. The critical value »f
expected from instability theory. Thus, the growth rate carfor the onset of the one- to two-layer transition and the
be determined by employing an exponential fit to the increasvalue where the out-of-plane lattice instability begins to ap-
ing portion of the curve. Doing so shows the growth rate topear were both determined by an analysis of the out-of-plane
be w;=6.30 s* as compared to that found from analytical lattice wave using both analytical and simulation methods.
theory, where it was 6.86°% The values ofn obtained were shown to agree with one
Growth rates for out-of-plane lattice instabilitiggrowing  another, thus showing that for a Yukawa system, the transi-
waves for »=0.420, 0.396, and 0.384 have also been detertion starts at the point where the out-of-plane lattice instabil-
mined using this method and are shown in Fig. 8 along withity appears. The resulting three-layer system caused by this
those for%=0.408. Only growth rates for waves with wave instability was observed at the center of the system. The
numbers of approximatelk=6.4 are calculated since the out-of-plane lattice instability was itself examined, and
magnitude of waves with=12.8 are too small to show any growth rates obtained for systems with differingvalues
reasonable increase. Also, only data showing a smooth iragain using both analytical and simulation methods. The
crease in wave magnitude within the first half second aregrowth rate values obtained were found to agree and both
used. The analytical results for thegevalues are also shown methods showed that, for all values investigated, the high-
in Fig. 8. As can be seen, the analytical prediction that theest growth rates occurred for waves with wave numker
growth rate increases with decreasingis verified by the =6.4 and 12.8 mit. Only waves whose wave numbers fall
simulation data. Although the average percentage differenceithin a »-dependent range around these two values can be-
between the simulation and the analytical results is approxicome instabilities or growing waves.

FIG. 8. Growth rates of the out-of-plane lattice instabilities from
simulation(shown by the symbo)sand analytical theoryshown by
the lines.
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