
Structural phase transitions and out-of-plane dust lattice instabilities in vertically confined
plasma crystals

K. Qiao and T. W. Hyde
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, Waco, Texas 76798-7310, USA

sReceived 3 September 2004; revised manuscript received 15 November 2004; published 16 February 2005d

The formation of plasma crystals confined in an external one-dimensional parabolic potential well is simu-
lated for a normal experimental environment employing a computer code calledBOXITREE. Under appropriate
conditions, crystals were found to form layered systems. The system’s structural phase transitions, including
transitions between crystals with differing numbers of layers and the same number of layers but different
intralayer structures, were investigated and found to agree with previous theoretical and experimental research
results. One- to two-layer transitions were examined in detail and shown to start at the point where the
out-of-plane lattice instability appears. The resulting three layer system caused by this instability was observed
at the center of the system. Finally, growth rates for this out-of-plane lattice instability were obtained using the
BOXITREE simulation with these results shown to agree with those obtained from analytical theory.
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I. INTRODUCTION

In a typical experiment on Earthsunder gravityd, a plasma
crystal is formed within a complex plasma when dust par-
ticles are levitated in the sheath region due to a balance be-
tween the gravitational and electrostatic force of a rf dis-
charge f1–3g. The total external potential in this sheath
region has been shown experimentally to approximate a
parabolic potential wellf4g; thus, it can be modeled asf5g

vszd =
m

2
z2, s1d

wherez is the particle height andm is the parabolic coeffi-
cient.

In most cases, the particles will become negatively
charged due to electron collection. However, this charge will
be shielded by the ambient plasma, and thus the interaction
between particles is best represented by a repulsive Yukawa
potential defined by

vsrd = q exps− r/lDd/4p«0r , s2d

whereq is the particle charge,r is the distance between any
two particles, andlD is the dust Debye length.

Structural phase transitions were first investigated by Du-
bin for a two-dimensional one-component plasmasOCPd
systemf6g. More recently, it has been proposed that an in-
stability of the out-of-plane dust lattice wavesDLWd f7–10g
in a single-layer system may be the cause for the structural
phase transition. Such transitions have been observed in ex-
periments on both OCP systemsf11g and colloidal suspen-
sions f12g. For plasma crystals, structural phase transitions
have not yet been experimentally observed but have been
investigated theoretically by Totsujiet al. f5g employing a
confined Yukawa system as a model. Totsujiet al. estab-
lished a phase diagramf5g for such a system characterized by
two dimensionless parametersk andh. The shielding param-
eterk is defined by

k =
a

lD
, s3d

wherea is the mean interparticle distance as defined byNs
=1/pa2 with Ns the surface number density in thexy plane.
h is defined by

h =
m

4pq2Ns
3/2, s4d

where q is the charge on the grain andm is the parabolic
coefficient as defined above.

In this research, the formation of a plasma crystal mod-
eled by a vertically confined Yukawa system will be simu-
lated using a numerical code calledBOXITREE f9,13–15g. The
structural phase transitions will be investigated and com-
pared with previous research results. The dispersion relation
for the out-of-plane DLW will be obtained for a single-layer
system, showing that the out-of-plane dust lattice instability
appears at the point where the one- to two-layer transition
startsf16g. This out-of-plane dust lattice instability will be
examined with the instability growth rates calculated from
BOXITREE simulations conducted for varying values ofh.
The dispersion relation for the out-of-plane DLW obtained
using an analytical methodf9g will also be used to calculate
these growth rates, and these analytical results will be com-
pared to the simulation results.

II. STRUCTURAL PHASE TRANSITIONS

The dust particles in the plasma sheath are modeled as
particles with a constant and equal chargeq=3.84310−15

Coulomb, equal massmd=1.74310−12 kg, and radiusr0
=6.5 mm. The interparticle interaction is assumed to be pro-
duced by a Yukawa potential with a Debye lengthlD
=0.57 mm while the external potential is assumed to be para-
bolic in nature as shown by Eq.s1d. The box size is set at
15315315 mm3, for a particle number of 600, and thus the
surface number densityNs the mean distancea, and the
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shielding parameterk are equal to 2.67/mm3, 0.346 mm,
and 0.61, respectively. Neutral gas drag is included with an
Epstein drag coefficientf17g b=2.22 s−1. The boundary con-
ditions in theXY directions are considered to be periodic
since the box employed has a size much smaller than the size
of the plasma crystal produced in a typical experimental en-
vironment. The boundary condition on theZ direction is as-
sumed to be a closed boundary condition with particles hit-
ting the top or bottom boundaries of the box reflected under
an elastic collision.

Crystallization of the complexsdustyd plasma is simulated
via the formation of an ordered crystal from an initially ran-
dom distribution of particles placed in the box. Simulations
were conducted for the range 0.48ùhù0.0034. Ash de-
creases from 0.48 to 0.0034, the crystal transitions from a
single-layer system to a two-, three-, four-, and five-layer
systemf16g with the system existing as a single-layer system
for 0.48ùhù0.456, a two-layer system for 0.336ùh
ù0.072, a three-layer system for 0.06ùhù0.0216, a four-
layer system for 0.0204ùhù0.0084, and a five-layer sys-
tem for 0.0072ùhù0.0034.

Between any two consecutive stages there is a structural
phase transition. While within each stage, ash decreases the
number of layers remains constant, and the symmetry within
each layer changes from a square to a hexagonalstriangulard
lattice. Between these symmetries, there is a transition stage
where the lattice exhibits a complex structure showing a
mixture of both square and hexagonal symmetriesf16g. All
of the above agree with previous theoreticalf5,6g and experi-
mentalf11,12g results.

As can be seen in Fig. 1, for both square and hexagonal
symmetries the vertical projection of a particle within one
layer always falls onto the center of the lattice cell in the
adjacent layer. As can also be seen in Figs. 1sbd and 1sdd for
hexagonal lattices, particles within the third layer are prima-
rily aligned vertically with particles in the first layer. This is
characteristic of an hcp lattice, in which particle positions
within a hexagonal lattice plane repeat themselves every
other plane; thus the planes are ordered asABABAB….

In fact, the fcc phase, for which the lattice planes are
ordered asABCABC…, is the thermodynamically preferred
state for a layered hexagonal structure since its Helmholtz
free energy is smaller. However, for a Yukawa interaction
with short range, the difference between the free energies of
the fcc and hcp phases is very small, and local fluctuations of
the particle density might result in a transition from the fcc to
the hcp phasef18g. This is presumably why the hcp rather
than the fcc structure was observed.

No vertical alignment was seen in any of the simulations.
This is to be expected since the vertical alignment observed
in plasma crystal experiments on Earth is created by the ion
flow wake effect while the system considered by this re-
search is a pure Yukawa systemf16g.

The relative thickness of the system was also investigated
as a function ofh f16g. A general increase in thickness ash
decreases and discontinuities in thed-h function correspond-
ing to the stepwise transitions in the number of layers,N, can
be clearly seen in Fig. 2. Also shown is the dependence of
the intralayer structures onh. It can be seen that the struc-

tural phase transitions and thed-h function are in agreement
quantitatively with the predictions of Totsujiet al. f5g.

III. ONE- TO TWO-LAYER TRANSITION

As can be seen from thed-h function sFig. 2d the one- to
two-layer transition is characterized by a dramatic increase in
overall system thickness. In Ref.f6g, it was shown that for an
OCP, a single-layer system would first go through a one- to
three-layer transition caused by the out-of-plane lattice insta-
bility. As h decreases, the three-layer system will then

FIG. 1. Top view of a vertically confined Yukawa system when
sad h=0.0204, sbd h=0.0084 sfour-layer systemd, scd h=0.0066,
and sdd h=0.0034 sfive-layer systemd. The asterisks, circles, and
triangles represent particles in the first, second, and third layers,
respectively.

FIG. 2. The system’s relative thicknessd/a as a function of the
characteristic parameterh. The intralayer structure with square, tri-
angular, and complex symmetries are represented by squares, tri-
angles, and circles, respectively.
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change to a two-layer system via a first-order phase transi-
tion. To examine the one- to two-layer transitionswhich be-
gins when 0.432ùhù0.408d in greater detail,BOXITREE

simulations were conducted with a fine adjustment ofh val-
ues around the transition point, for the range 0.444ùh
ù0.418. The correspondingd-h function is shown in Fig.
3sad. As can be seen, the critical value ofh signifying the
start of the one- to two-layer transition falls in the range
0.430ùhcritical ù0.427.

The dispersion relation for the out-of-plane lattice wave
has recently been derived using an analytical methodf9g as

v2 + ibv =
mq

md
− 2 o

m.nÞ j ,l

gmn
00

md
sin2Skx0

mn

2
D . s5d

The condition, which must be met for instability in the out-
of-plane lattice wave to occur, is for Eq.s5d to have a com-
plex solution forv. When this happens, the dispersion rela-
tion of the wave propagating parallel to the prime translation
vector intersects thev=0 axisf6g.

Using Eq.s5d, the dispersion relation for the out-of-plane
lattice wave propagating parallel to the prime translation
vector was foundf16g to intersect thev=0 axis whenm
ø3.09310−9 kg/s2 swhich corresponds tohø0.4274d. The
solid line in Fig. 3sbd shows this theoretical dispersion rela-
tion whenh is equal to the threshold value of 0.4274.

A BOXITREE simulation was also run for this value ofh
and then employing the method inf9g; the dispersion relation
of the out-of-plane lattice wave was represented by an inten-

sity graph for the particle velocities ink-v spacefFig. 3sbdg.
As can be seen, the two methods agree wellfFig. 3sbdg with
both showing the threshold value ofh for the out-of-plane
lattice instability as 0.4274. Comparing this value ofh with
the critical value ofh signifying the start of the one- to
two-layer transition, 0.430ùhcritical ù0.427, it is verified
that for a vertically confined Yukawa system the one- to two-
layer transition starts at the point where an instability of the
out-of-plane lattice wavesor out-of-plane lattice instabilityd
appearsf16g.

There is some evidence that the three-layer structure
caused by the out-of-plane lattice instability as predicted in
Ref f6g might be visible at the center of the layered system
for h=0.4056sFig. 4d. The fact that it only appears at the
center of the layered system is presumably due to the artifi-
cial periodic boundary conditions employed in the simula-
tion.

IV. OUT-OF-PLANE LATTICE INSTABILITY

The growth rate of the out-of-plane lattice instability is
described by the imaginary partvi of the complex frequency
v. Equations5d was solved forhø0.4274 and the complex
solution forv was obtained. The realsvrd and imaginarysvid
parts of this solution as a function of the wave number k for
h=0.420, 0.408, 0.396, and 0.384 are shown in Fig. 5.

From Fig. 5sbd, it can be seen that the maximum growth
rates occur for waves with wave numberk=6.4 and
12.8 mm−1 and that only waves whose wave numbers fall
within a specific range around these two values will have a
positive growth rate. All other waves exhibit a small constant
negative growth rate, which is caused by damping due to
neutral gas drag. Both the growth rates and the range of
allowable wave numbers for growing waves increase ash
decreases.

To verify these analytical predictions,BOXITREE simula-
tions for time-dependenth values were conducted. The
simulations were started with ah value of 0.432, which is
greater than the threshold value of 0.4274, thus ensuring
there would be no out-of-plane lattice instability or one- to
two-layer transition. After 65 s the system stabilized as a
single-layer crystal. At this timeh was changed to a value

FIG. 3. sColor onlined sad The d-h function for 0.444ùh
ù0.418 obtained fromBOXITREE simulations andsbd the dispersion
relation of the out-of-plane lattice wave propagating parallel to the
prime translation vector obtained using both the analytical method
and aBOXITREE simulation for the vertically confined Yukawa sys-
tem sh=0.4274d.

FIG. 4. Side view of the vertically confined Yukawa system
whenh=0.4056.
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below the threshold value of 0.4274, at which point out-of-
plane lattice instabilities appeared.

These instabilities, or growing waves were then detected
and investigated by analyzing the output data from
BOXITREE. Particle motion was tracked for approximately 1 s
after the change ofh with output data files created every
0.001 s with a total of 1000 data files obtained. Once this
data was collected, thex-y plane of the box for each set of
particles was divided into bins. For each data file the average
vertical displacement from equilibrium for the particles
within each bin was determined, yielding a matrix of posi-
tions with column number equal to the number of bins and
line number equal to the number of data files. Since each file
was collected at a specific time and particles within each bin
had a specificx coordinate, this position matrix yields par-
ticle displacements, which are both timestd and positionsxd
dependent. This is the same method employed inf9g except
that vertical displacements instead of velocities are consid-
ered. Since the simulation results were to be compared with
growth rates for waves propagating parallel to the prime
translation vector, the bins were chosen perpendicular to
it f9g.

A Fourier transformation of this matrix aboutx fEq. s6dg
yields a new matrix representing particle displacement in
k-t space:

Zk,t = 2/TLE
0

L

zsx,tdexpf− ikxgdx. s6d

Since this matrix was obtained from the random particle
motion on the vertical direction, it represents the time depen-
dence of the magnitude of the thermally excited out-of-plane
lattice waves for various wave numbers. As shown in Fig. 6,
these data can be represented by an intensity graph ink-t
space, where the magnitude of the waves is given by pixel
brightness.

Figure 6 shows an intensity graph obtained from a simu-
lation for h=0.408 after the system stabilized as a single-
layer crystal. It can be seen that for waves withk values of
approximately 6 and 13, the magnitude increases with time,
while waves with otherk values do not show any apparent
growth. To determine whether the range ofk values for
growing waves agrees with that found analytically, the theo-
retical growth rate curve obtained forh=0.408 is superim-
posed on the right side of the graph. As can be seen, the
range of wave numbers for growing waves is in good agree-
ment with the analytical results.

The behavior of the waves can be seen more clearly by
plotting the magnitude of a specific wave with a particular
wave number as a function of time. This is shown fork
=2.36 andk=7.07 in Figs. 7sad and 7sbd, respectively. As can
be clearly seen, fork=2.36, the magnitude of the wave is

FIG. 5. vr andvi as functions of wave numberk for h=0.420,
0.408, 0.396, and 0.384.

FIG. 6. sColor onlined An intensity graph showing the time de-
pendence of the magnitude of thermally excited out-of-plane lattice
waves for various wave numbers forh=0.408.

FIG. 7. Magnitude of the out-of-plane lattice wave as a function
of time for k=2.36 mm−1 andk=7.07 mm−1 sh=0.408d.
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small sbelow 1.2310−4 md and random, while fork=7.07,
the magnitude exhibits a smooth increase for the first 0.5 s
and then stabilizes with a value of approximately 5.0
310−4 m for the second 0.5 s. It can also be seen that the
increase of magnitude is almost exponential, as would be
expected from instability theory. Thus, the growth rate can
be determined by employing an exponential fit to the increas-
ing portion of the curve. Doing so shows the growth rate to
be vi =6.30 s−1 as compared to that found from analytical
theory, where it was 6.86 s−1.

Growth rates for out-of-plane lattice instabilitiessgrowing
wavesd for h=0.420, 0.396, and 0.384 have also been deter-
mined using this method and are shown in Fig. 8 along with
those forh=0.408. Only growth rates for waves with wave
numbers of approximatelyk=6.4 are calculated since the
magnitude of waves withk=12.8 are too small to show any
reasonable increase. Also, only data showing a smooth in-
crease in wave magnitude within the first half second are
used. The analytical results for theseh values are also shown
in Fig. 8. As can be seen, the analytical prediction that the
growth rate increases with decreasingh is verified by the
simulation data. Although the average percentage difference
between the simulation and the analytical results is approxi-

mately 20%, calculations show that this difference most
likely arises from round-up error of the simulations. Another
possible error comes from the fact that for smallh sh
,0.400d, the system stabilizes after approximately 0.5 s, ex-
hibiting a rough two-layer shape. Since the analytical predic-
tion is made based on the assumption that the system is a
single-layer system, a deviation from the analytical predic-
tion is to be expected.

V. CONCLUSIONS

The structural phase transitions within a plasma crystal
modeled as a vertically confined Yukawa system, including
both transitions between different numbers of layers and in-
tralayer structures were simulated using theBOXITREE code.
The generated results agree with previous theoretical and ex-
perimental results.

BOXITREE was also employed to investigate both the one-
to two-layer transition and the out-of-plane instability for a
vertically confined Yukawa system. The critical value ofh
for the onset of the one- to two-layer transition and theh
value where the out-of-plane lattice instability begins to ap-
pear were both determined by an analysis of the out-of-plane
lattice wave using both analytical and simulation methods.
The values ofh obtained were shown to agree with one
another, thus showing that for a Yukawa system, the transi-
tion starts at the point where the out-of-plane lattice instabil-
ity appears. The resulting three-layer system caused by this
instability was observed at the center of the system. The
out-of-plane lattice instability was itself examined, and
growth rates obtained for systems with differingh values
again using both analytical and simulation methods. The
growth rate values obtained were found to agree and both
methods showed that, for allh values investigated, the high-
est growth rates occurred for waves with wave numberk
=6.4 and 12.8 mm−1. Only waves whose wave numbers fall
within a h-dependent range around these two values can be-
come instabilities or growing waves.
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